Blog divulgativo sulla matematica applicata

Matematica e derivati finanziari

stock-market-boardWarren Buffet, considerato da molti l’investitore di maggior successo del ventesimo secolo, ha definito i derivati armi di distruzione finanziaria di massa.

Non aveva tutti i torti visto che guardando tra le cause delle maggiori perdite finanziare di sempre dovute a errati investimenti si trovano derivati nelle prime 7 posizioni! (link qui)

Vince (se così si può dire) questa classifica una perdita di 9 miliardi di dollari subita dalla banca d'affari Morgan Stanley nel 2008.

Cosa centra tutto questo in un blog dedicato alla matematica applicata?

Cominciamo (come spesso è opportuno fare) dall'inizio!

Da Talete a Wall Street

Talete di Mileto

Talete di Mileto

Il più antico derivato finanziario di cui si ha traccia è stato comprato nel VI secolo a.C. da un personaggio ben noto ai lettori di questo blog: il matematico e filosofo Talete.

Secondo alcuni aneddoti pare che Talete avesse un certo fiuto per gli affari e prevedendo un eccezionale stagione di raccolta delle olive stipulò quello che in termini moderni verrebbe chiamato derivato per trarne profitto.

Questo tipo di strumenti era abbastanza comune tra i mercanti dell'antichità per fissare in anticipo il prezzo di beni che avrebbero avuto a disposizione solo in un secondo momento.

Un utilizzo più sistematico si sviluppò nel 1700 in Giappone nella borsa del riso di Dojima a Osaka, e poi nell'800 negli Stati Uniti, in particolare nella città di Chicago.

L'uso dei derivati rimase comunque un'attività limitata principalmente al commercio fino a circa 20/25 anni fa quando si è verificata un'improvvisa espansione del mercato dei derivati che ha provocato un boom di assunzioni di matematici e fisici da parte di banche, assicurazioni e società di consulenza che lavorano in ambito finanziario.

Come mai le banche hanno bisogno dei matematici? E soprattutto... cosa diavolo sono questi derivati?!

Definizione ed esempi

Dizionario

Si possono dare diverse definizioni di cos'è un derivato, una abbastanza completa è la seguente:

un derivato è un contratto che prevede uno o più scambi futuri di denaro o altri beni, i cui importi dipenderanno da che valori assumeranno certe variabili dette sottostanti del derivato.

Usando un linguaggio più matematico un derivato può essere descritto da una struttura di questo tipo:

  1. un vettore di tempi (t_1, \ldots, t_n) che rappresentano le date di pagamento;
  2. un vettore di variabili \vec{x}=(x_1, \ldots, x_k) che rappresentano i sottostanti;
  3. n funzioni f_1(\vec{x}_{t_1}), \ldots, f_n(\vec{x}_{t_n}) che descrivono come sono fatti i pagamenti alle date t_1, \ldots, t_n in funzione del valore dei sottostanti. In gergo finanziario queste funzioni vengono dette payoff.

Questa struttura in molti casi pratici si semplifica perché il pagamento è uno oppure c'è un solo sottostante o le funzioni di pagamento sono tutte uguali.

Dopo tutta questa teoria è ora di fare degli esempi concreti! I seguenti sono derivati che hanno come sottostante il prezzo del petrolio che ad oggi vale circa 40 dollari al barile (potete trovare i prezzi aggiornati qui).

Derivato 1: se il prezzo del petrolio al 31/12/2015 sarà maggiore o uguale a 50 dollari al barile allora chi ha comprato il derivato riceve 30000 euro, altrimenti non riceve nulla.

Funzione di pagamento derivato 1Derivato 2: posto x = "prezzo del petrolio al 31/12/2015" chi ha comprato il derivato riceve 1000\cdot\max[x-50,0] euro, o scritto in altro modo, riceve

f(x) = \begin{cases}1000\cdot ( x - 50 ) & \text{se } x \geq 50\\ 0 & \text{se } x < 50 \end{cases}

Funzione pagamento derivato 2

Tutto chiaro ma... a cosa servono?

useless

I derivati possono essere usati con due scopi:

  • per coprirsi nei confronti di un certo rischio (comprando un derivato che mi fa guadagnare quando si verificano gli eventi da cui voglio proteggermi);
  • per pura speculazione (comprando un derivato per cercare di venderlo successivamente a un prezzo maggiore).

Prendendo gli esempi di prima il derivato 2 è adatto a coprirsi dal rischio di un rialzo del prezzo del petrolio perché paga in proporzione a quanto più il prezzo è maggiore di 50. Ipotizziamo che io abbia un'attività legata al petrolio tale per cui se il prezzo si alza troppo la mia attività è a rischio. Potrei comprare questo derivato come una sorta di "assicurazione". Se il prezzo si alza la mia attività sarà in perdita ma avrò i pagamenti del derivato che copriranno queste perdite.

Il derivato 1 è invece considerato speculativo perché ha una funzione di pagamento discontinua e costante a tratti. Di conseguenza:

  • per piccole variazioni del prezzo del petrolio (attorno al valore di 50) può prevedere pagamenti molto diversi;
  • quando paga mi dà sempre la stessa quantità anche se il prezzo dovesse raggiungere valori estremamente alti.

Queste caratteristiche non lo rendono adatto a essere usato come "assicurazione" sul rialzo del petrolio.

Potete capire come i derivati possano essere utili per coprirsi da eventuali rischi, ma anche pericolosi se non si valutano correttamente i rischi di perdita legati a questo tipo di investimenti.

OK, il prezzo è giusto!

La ricetta per dare un prezzo a un derivato consiste nel:

  1. fissare un modello stocastico che descriva l'evoluzione dei sottostanti;
  2. trovare la distribuzione di probabilità dei sottostanti alle date di pagamento;
  3. dalla distribuzione dei sottostanti, tramite le funzioni di pagamento, trovare la distribuzione dei pagamenti;
  4. il prezzo è dato dalla media della distribuzione dei pagamenti.

Quindi il prezzo è il guadagno medio che posso ottenere da un derivato. Questo calcolo può essere più o meno difficile a seconda di quanto complesso è il modello che si usa per i sottostanti o di quanto complicate sono le funzioni di pagamento.

Nei casi più semplici il prezzo può essere trovato tramite formule chiuse. Quando questo non è possibile il prezzo è di solito calcolato tramite delle simulazioni Montecarlo.

Visto che per dare un prezzo ai derivati bisogna saper smanettare con i processi stocastici potete capire perché le aziende che hanno a che fare con i derivati siano interessate a reclutare matematici e fisici da impiegare in questo ambito.

Cosa sono i processi stocastici? Ne parleremo più estesamente in uno dei prossimi post, per il momento ci basta sapere che servono per descrivere fenomeni che hanno un'evoluzione non prevedibile in modo deterministico (ad esempio il prezzo di un'azione o il moto caotico di una molecola che si scontra contro altre che la circondano).

Per oggi è tutto, alla prossima!

P.S.

Chi avesse già conoscenze sul tema dei derivati avrà notato che ho fatto alcune semplificazioni per cercare di rendere il tema meno contorto. In particolare ho omesso:

  • complicazioni sul fatto che di solito i valori dei sottostanti non sono rilevati alle date di pagamento ma a date precedenti;
  • il fatto che per trovare il valore a oggi dei pagamenti futuri questi vanno scontati con una qualche curva dei tassi.

CC BY-NC-SA 4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Similar posts

1 commento

  1. Stefano Buttera's Gravatar Stefano Buttera
    settembre 7, 2015    

    Ciao Enrico,

    Well done, aspetto la seconda parte ;-)

Lascia una risposta

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *

È possibile utilizzare questi tag ed attributi XHTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Iscriviti alla nostra newsletter

Resta aggiornato sui nostri post e su quello che facciamo.

Canale Telegram dedicato alla Matematica

Iscriviti sul nostro canale Telegram

MIA15 - Nomination

Rimani aggiornato sui più interessanti articoli di divulgazione matematica e non solo!

Seguici su Twitter

Tag Cloud

Partecipa all’indagine “Io e la Matematica”

Clicca sull'immagine sottostante per rispondere al breve e anonimo questionario:

MIA15 - Nomination

Conviditi con i tuoi contatti questo link!

Grazie per il sostegno ai #MIA2015

Grazie a tutti per averci votato ai "Macchia Nera Awards 2015" nella categoria "Miglior Sito Tecnico-Divulgativo".

Siamo arrivati in finale grazie al vostro sostegno!

MIA15 - Nomination